e

AD=-AD72 380 NORTHWESTERN UNIV EVANSTON IL DEPT OF ELECTRICAL ENG=-ETC F/6 9/2
PERFORMANCE CONSIDERATIONS IN THE MAINTENANCE PHASE OF LARGE=SC==ETC(U)
JUN 79 S S YAUr» J S COLLOFELLO F30602=76=C~-0397

UNCLASSIFIED RADC=TR=79-129 NL

END
)
9~79
poc

i

Il

B

'8
L25 e e

Il

20

AACT23E

DDO_FILE_COPY.

RADC-TR-79-129
Interim Report
June 1979

PERFORMANCE CONSIDERATIONS IN

THE MAINTENANCE PHASE OF LARGE-SCALE
SOFTWARE SYSTEMS

Northwestern University

S. S. Yau
J. S. Collofello

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER

Air Force Systems Command
Griffiss Air Force Base, New York 1344I

79 08 06 030

This report has been reviewed by the RADC Information Office (0OI) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR-79-129 has been reviewed and is approved for publication.

NROVED: 2 Becenwo

ROCCO F. IUORNO
ProjectABngincer

£2PROVED: 1552:;;2&‘73%253 bt

WENDALL C. BAUMAN, Colonel, USAF
Chief, Information Sciences Division

FOR THE COMMANDER: f%
; 2d”

JOHN P. HUSS
Acting Chief, Flans Office

If your address has changed or if you wish to be removed from the RADC
mailing 1list, or if the addressee is no longer employed by your organization,
please notify RADC (ISIS) Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

/ READ INS C
(£ REPORT DOCUMENTATION PAGE PO e it by IS
</ [V REPORT NUMBER 2. GOVT ACCESSION NO.[3. RECIPIENT'S CATALOG NUMBER
P AL AL
~ | ranchrr-79-129Y
4. TITLE (and Subtitle) / / 5. TYPE OF REPORT & PERIOD COVERED
i / i R /jlnterim 1;chnical Repert,
E gERFORMANCE CONSIDERATIONS IN THE MAINTENANCL/ 1 Aug 76 - Nov 78 e
PHASE OF LARGE-SCALE SOFTWARE SYSTEMS e 6 PERFORMING ORG. REPORT NUMBER
7 A X N/A
7. AUTHOR(s) " I 8. CONTRACT OR GRANT NUMBER(s)
| / Stephen S./Yau op gy Tt R
- James S./Collofello s 4?30602 76-C-0397
TR A | D——
5. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Northwestern University 7l = e S
Dept. of Electrical Engineering & Computer-Seience 6272§/ (/7)
Evanston IL 60201 . |5581p278 - i i
11. CONTROLLING OFFICE NAME AND ADDRESS /€ |12, REPORT DATE
" unda9 79 |
Rome Air Development Center (ISIS) [{ 4137 NUMBER OF PAGES
Griffiss AFB NY 13441 44
14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CL ASS. (of this report)
:* ’ .
Same)“’ [UNCLASSIFIED
/,,_, 1Sa DECLASSIFICATION DOWNGRADING |
SCHEDULE
N/A
16. DISTRIBUTION STATEMENT (of this Report) ==

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

—_—— A 9
18. SUPPLEMENTARY NOTES

RADC Project Engineer: Rocco F. Iuorno (ISIS)

=y

—

19. KEY WORDS /Continue on reverse side if necessary and identify by block number)

Software maintenance, performance consideration, large-scale software systems,
ripple effect analysis, performance changes, mechanisms of propagation,
performance attributes, critical sections.

20, ABSTRACT (Continue on reverse side If necessary and identify by block number)

Maintenance of large-scale software systems is a complex and expensive process.
Large-scale software systems often possess both a set of functional and
performance requirements. Thus, it is important for maintenance personnel to |
consider the ramifications of a proposed modification from both a functional
and a performance perspective.

DRSS - <3 SR S VA IR D

n this report the possible effect of program modifications during the main-
|_tenance phase on_ the performance of large-scale software systems is analyzed.

FORM
DD, au7s 1473 UNCLASSTFIED by g

SECURITY CLASSIFICATION OF THIS PAGE When Data Enlnn.i‘

/

y/4

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

i Mechanisms for the propagation of performance changes from one part of the
system to another are identified, and the releationship among these mechanisms,
performance attributes, critical program sections and performance requirements
is also investigated. The development of a maintenance technique for pre-
dicting which performance requirements in the system may be affected by a
proposed modification is outlined. This technique will enable maintenance
personnel to incorporate performance considerations in their criteria for
selecting the type and location of software modifications to be made, and to
identify which performance requirements must be verified after the modification
in order to insure that they have not been violated by the modification.

An additional report is planned for the formal description of the algorithms

N

composing this maintenance technique.

WA, AP S D e Sy Fa) i

T A TR | SRS

UNCLASSIFIED i

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

CONTENTS

LIt Of BIGHERS S & orciolius s =nisisisianis inis et ssitslbihratea s laoie'te inlinsa! mEee o la o)l
L. INTRODUCTION. . ceveveevecnnnnnn i B PG T e L R e S eketol s hacinte
2 PERFORMANCE CONSIDERATIONS IN SOFTWARE LIFE CYCLE......eo0veen.

3. LEVEL AT WHICH PERFORMANCE CHANGES DUE TO PROGRAM MAINTENANCE

ARE CONSIDERED....ccceuern hiar eturete e aite O e T T T P R O SR T
4 PERFORMANCE DEPENDENCY RELATIONS...:ececeeecaens S R RO
5 MECHANISMS FOR THE PROPAGATION OF PERFORMANCE CHANGES..........
5.1 Parallel EXecUbIon: ... «veisesss vssinsssssasasiss Sh e v e e 1 it
5.2 Shared Resources.......eoee... e v e A R R e e
5.3 Interprocess Communication..... Sl ek ok o e el e el e e U e
5.4 Called Modules.........ooeunu. L R S T e T e e
5.5 Shared Data SEXUCEULES e cossoos xe s smeein s assensssssss sessbmnssse
5.6 Sensitivity to the Rate of Input...... et el o S S b W S e
9.7 Execution Priorities..icoscecveiscasss e W el n alb e e
5.8 AbStractionsS.csescecccvsinnsessse A L R TN,
6. IDENTIFICATION OF PERFORMANCE CHANGE PROPAGATION MECHANISMS

IN SOFTWARE SYSTEMS: o ccasnves vsssndsssneseseessssssss esnssssss
6.1 Identification of Modules Executable in Parallel............. S
6.2 Identification of Shared Resources...... R o fo
6.3 Identification of Interprocess Communication........ e
6.4 Identification of Called Modules. coosssvcvscvsrosconsossocsscss e
6.5 Identification of Shared Data StructureS......ceeeeeeeenecesns &
6.6 Identification of Modules Sensitive to Their Rate of Input
6.7 Identification of Execution-Priority Sensitive Modules....... o ok
6.8 Identification of Abstractions.......ceeeeee o b S 5 5o
7. PERFORMANCE ATTRIBUTES.covvveeeencnns e LY TR
8. CRITICAL SECTIONS OF A PROGRAM.:....evv. CEE e oo
9. RIPPLE EFFECT OF PERFORMANCE CHANGE..::eveve. v A A

10. MAINTENANCE TECHNIQUE FOR PREDICTING WHICH PERFORMANCE
REQUIREMENTS ARE AFFECTED BY THE MAINTENANCE ACTIVITY..........

10.1 The General Framework of the Maintenance Technique........... ves

14

14
14
15
15
15
18
19
19

19
20
24
24
25
25
26
26
26
27
29

31

31

32

R L Y SR T

10.2

Application of the Maintenance Technique to the Retesting
Phase of the Maintenance Process................

sesrsssvaserane 39

FUTURE RESEARCH AND CONCLUSTION.uuuvuvunnnnnnneneneeneennnn, 38
UTREEC ROBYTBER s o ¢ 50555 50t ws barka s 55 e s paninbsssn b ilssesion 38
Figure-of-Merit for Program Maintainability from a

Performance il L R, e I R T T S 39
Application to Design Phase........coeeeeeennnn.. S 2 disininissen i 39
Conclusions . .o eonsvnososssnssos

REFERENCES. ¢+ ¢cvvee. e ey oo

Sl St ie i altelie TN tS GRS v e e e G2

i1

LIST OF FIGURES

Page
Figure 1. A graph model of performance requirements of a

simple program expressed in terms of an R-Net....... 7
2. An invocation graph from Module B for illustrating

a Performance Dependency Relationship............... 9
3. An R-net of a simple program for illustrating a

Performance Interdependency Relationship between

Modulles' Biand cB il el diats Sodnidhs dridsiniadute saky Tl & O

4. (a) The R-net of a simple program and (b) the
invocation graph from Module B for illustrating that
the Performance Dependency Relationships are not
EEANGIEEVE . ot e lic diovit olie v vsmivlatetsial o e o siaisl Sk s e el e w el e 11

5. An invocation graph from Module B for illustrating
a Pure Performance Dependency Relationship between
Module A and Module B...ccivoveciconcvsiossvnnssosanse 12

6. (a) The R-net of a simple program, (b) the invoca-
tion graph from Module A, and (c) the invocation
graph from Module B for illustrating a Pure Perform-
ance Interdependency Relationship between Modules
& and B..... A AR i e e S A R G 13

7. The R-net of a simple program for illustrating
shared resources mechanism.......cciiiveiiieeeennnnn 16

8. An example of the interprocess communication
mechanism between two modules............... R 17

9. The R-net of a simple program for illustrating the
identification of modules executable in parallel.... 21

10. R-net of a larger and more complex program.......... 23

11. Relationship of Performance Attributes and the
Mechanisms for Propagation of Performance Changes... 28

12. Relationship of performance attributes (P.A.),

critical sections (C.S.) and the mechanisms for
propagation of performance changes in a program..... 30

iii

13,

14.

15

16.

Relationship of performance requirements (P.R.),
performance attributes (P.A.), critical sections
(C.S.), and the mechanisms for propagation of
performance changes in a pProgram........coceeeueeeeen 33

The framework of a maintenance technique in predict-
ing which performance requirements are affected by
the maintenance activity........... O T R T S |

Application of the maintenance technique in the pre-
diction of performance requirements affected by the
maintenance activity and in the retesting phase..... 37

The directed graph of resource utilization of a
DEGCEEE osis ¢o 68 w)nis ois oo & o miaialaioe e SR ER 40

iv

*._:nn.r- T e R e T

PERFORMANCE CONSIDERATIONS IN THE MAINTENANCE PHASE
OF LARGE-SCALE SOFTWARE SYSTEMS

1. INTRODUCTION

The amount of the maintenance effort in the life cycle of large-scale
software has been large and continuously increasing. It has been estimated
that some 75% of data processing personnel are already taken up by mainte-
nance ([l1]. Program maintenance includes error corrections, enhancements of
capability, deletion of obsolete capabilities and changes in mission require-
ments [2,3,4]. Optimization is also a formof maintenance requiring the modi-
fication of code within individual modules, or possibly the structure of the
complete system in order to improve its efficiency [5].

The maintainability of a system is a measure of the ease of making modi-
fications to the system. In software, the effect of a modification may not
be local to the location of the modification, but may also affect other
portions of the system. There is a ripple effect from the location of the
modification to the other parts of the system that are affected by the
modification. One aspect of this ripple effect is logical or functional in
nature. It involves the characterization of the system in terms of assump-
tions and decisions of program modules. When a change in a decision of a
module is made, all of the modules in the system that have the modifiel de-
cision as an assumption are affected. Modifications on these modules are
usually necessary and these modifications may affect the decisions made in
these modules. These modifications in the decisions will in turn affect
other modules using them as assumptions. This ripple effect goes on until
no decision is affected.

Another aspect of this ripple effect concerns the performance of the
system. During software maintenance, it is possible to perform a modifica-
tion to the system, investigate its logical ripple effect, and locate the
other modules in the system affected by the modification. After all the
logical corrections have been made to the system, the maintenance personnel
may conclude that they have restored the system to its previous level of
functional correctness. The performance of the system, however, may have
been altered as a direct result of this maintenance activity. Since a
large-scale program usually has both functional and performance requirements,
the net result of the maintenance effort may be satisfactory to the func-
tional requirements, but not to some performance requirements.

In many large-scale systems, the violation of a performance requirement
is equivalent to a system error and, thus, requires further corrective
action [6]. Consequently, it is important in the maintenance process to
fully underscand the potential effect of a modification to the system in
terms of the performance of the parts of the system directly involved in
the modification as well as those that are affected indirectly. The change
in performance of these parts may then have an impact on the performance of
other parts of the system. This ripple effect in terms of performance

S

T NG WPy 9% N

PP

i s

P TN

continues until the performance of no other part of the system is affected.

The maintenance process can, thus, be improved if maintenance personnel
are supplied with information enabling them to incorporate performance con-
siderations in their criteria for selecting the type and location of soft-
ware modifications to be made. This information is provided by the develop-
ment of a maintenance technique for predicting which performance requirements
in the system may be affected by a proposed modification. The prediction of
which performance requirements may be affected by a software modification is
a difficult task. Due to the size and complexity of design of many large-
scale systems, maintenance changes can cause repercussions almost anywhere
throughout the system [7,8]. Thus, the significance of this technique lies

in its ability to trace these repercussions and predict which performance
requirements may be affected.

In this report, the development of a maintenance technique for predicting
which performance requirements in the system may be affected by a proposed
software modification will be outlined. Mechanisms for the propagation of
performance changes, performance attributes, and critical software sections
will be defined and their relationship with performance requirements will

be analyzed. These results will form the basis for the development of the
maintenance technique.

The technique outlined in this report is applicable to all types of
large-scale systems possessing performance requirements including multi-
processing systems. The significance of the technique is its contribution
to a software engineering approach to maintenance. It provides maintenance
personnel with criteria for selecting the proper software modifications among
the available alternatives. Since the performance requirements which may
be affected by each proposed software modification can be identified using
this technique, it is probable that the maintenance personnel will select
modifications affecting the fewest number of performance requirements. If
it is decided that some performance requirements are very close to being
violated, the maintenance personnel may select the software modifications
among available alternatives that do not affect these requirements in order
to avoid further maintenance necessary to repair any violations to these
performance requirements. Thus, in this report we will show how the mainte-
nance technique is designed to complement the logical ripple-effect mainte-
nance tool in the prediction of the repercussions generated by software
modifications during the maintenance phase.

In this report we will also illustrate how the technique can help retest
the system whether its performance requirements have been violated by the
maintenance effort after the maintenance changes have been implemented. The
maintenance technique analyzes the proposed changes in respect to the per-
formance of the entire system, and not just the local areas involved in the
modification. It can then determine the performance requirements affected
by the maintenance change. It should be noted that during the evaluation
of alternative modifications, the maintenance technique was used to predict
worst-case effects on performance of software modifications. Now that the
modification has been implemented, the maintenance technique can substantial-
lyv refine its analysis and determine more accurately the performance require-

T

ments affected by the maintenance modifications. This permits the identifi-
cation of which portions of ti® system must be retested to insure that these
performance requirements have not been violated. Since the maintenance
effort must not violate any functional or performance requirements, this
maintenance technique provides a significant contribution in determining the

scale of retesting effort needed to insure that these requirements have not
been violated.

Throughout this report, we will identify the areas where more research
is needed. 1In particular, we plan to have an additional report.

1. The second report will cover the following topics:

a. Formal description of the algorithms for identifying the eight
mechanisms for the propagation of performance changes in a large-
scale program. Also included will be proofs of the correctness
of these algorithms as well as illustrative examples.

b. Formal description of the algorithms for identifying the criti-
cal software sections of a large-scale program.

c. Formal description of the algorithms for identifying performance
dependency relationships in a large-scale program.

\ d. Formal description of the algorithms composing the technique for
{ predicting performance requirements affected by maintenance

activity. Also included will be proofs of the correctness of
these algorithms.

e. Demonstration of the maintenance technique during the maintenance
phase of a typical program,

2. P ERFORMANCE CONSIDERATIONS IN SOFTWARE LIFE CYCLE

/Recent publications are beginning to stress the importance of performance
conssiderations in the design phase of software development. Previsus work in
sof tware specifications techniques has centered upon only the functional
characteristics of software systems [9,10] . Performance considerations were
only considered after the system was designed and implemented. Yet, failure
to include performance specifications as part of the initial development
pxocess is one of the factors leading to significant problems during the
development phase. This failure is a consequence of the "'structured program-
ming period" during which the prevalent attitude was that performance should
only be dealt with after the system was built [11].

Performance analysis is now being introduced as an important and necessary
tool for choosing which design among several alternatives should be used
during the design stage. It is possible to conceive that more than one of
the designs would satisfy the functional requirements of a problem, but the
performance characteristics of the different designs will probably vary. 1In
this case, it is the performance considerations that will determine which of
the designs should be selected [12].

&

S ————
el S

d
g
i

Performance considerations are also often in conflict with modularity
considerations. In real-time systems, it is often critical to have the
appropriate modules in memory when they are needed. This may conflict with
the technique of designing a system to be tunctionally and logically modu-
lar (13]. Furthermore, performance requirements will sometimes impose
additional constraints on the structure of the program so that principles
in structured programming cannot be followed. For example, storage limita-
tions and access time requirements may dictate that only certain data
structures should be used. This will, however, violate Dijkstra's idea of
postponing the choice of data structure to the last minute. Overall,
program design and testing considerations often dictate modularity properties
that often conflict with properties necessary for high performance [13].
This necessitates a tradeoff. The entire problem is summarized eloquently
by Branscomb when he said, "The high cost of software has its roots in the
lack of methodology for performance specification and evaluation" [14].

A current trend in software engineering is, thus, toward the inclusion of
performance considerations in the evaluation of alternative designs in the
design phase. Although current research results in this area are promising,
there still remains a vast amount of work to be done [11,12,15,16]). Some
of the preliminary results in this area that pertain to the study of perform-
ance considerations at the maintenance phase of the software life cycle will
be noted as they are encountered. Performance considerations at the design
phase, however, differ from those in the maintenance phase. They do share a
common objective of identifying the best proposed alternative implementation
in terms of performance. However, during the maintenance phase, the mainte-
nance personnel must be able to ascertain the ramifications in terms of
performance of proposed changes in order to achieve this objective.

3. LEVEL AT WHICH PERFORMANCE CHANGES DUE TO PROGRAM MAINTENANCE ARE
CONSIDERED

In order to study the potential effect of a modification, it is first
necessary to establish at what level of system decomposition the performance
changes should be studied. Now the definition of what constitutes performanc e
should be user-oriented because recognition of a change in performance of the
system by a user is dependent upon his performance expectations. A minor
change in performance may be unnoticed by most users, but the same change may
be catastrophic to others. The ideal level of system decomposition for
studying the potential effect of a program modification to performance then
appears to be the level at which performance requirements can be stated and
changes of performance meaningfully interpreted.

The approach to stating performance requirements has historically been
in terms of functions and subfunctions as demonstrated in many military
standards. This approach does have some difficulties when applied to large-
scale software. First, it is often difficult to trace the processing
required for an input message. Since functions may span subsystems and are
often interrelated, it is also difficult to develop acceptance tests [17].

Another obvious way of stating performance requirements is in terms of
the operations that each software module performs. The disadvantage of this

approach is that the performance requirements specified in this way are
typically oriented more towards the implementation techniques of the module
rather than the user's requirements. In large-scale systems, some of the
module performance requirements may be incompatible with others in the
system. This can result in failure during the integration phase [18].

The current approach in software engineering to the statement of per-
formance requirements is in terms of flows through the system [17-22].
The system is examined from the perspective of stimuli and responses. Each
flow originates with a stimulus and continues to the ultimate response.
Along each flow, performance requirements are stated to specify how well the
functional requirements are met. The performance requirements are defined
in terms of timing, response time, accuracy, frequency of occurrence, etc.
for each stimulus-response pair. This enables simplified testing procedures
for performance requirements stated in terms of specific paths and their
associated data.

These performance requirements can be synthesized to form a Requirement
Network (R-Net) composed exactly of the requirement paths [19). An R-Net
consists of:

(1) A set of nodes representing processing steps called "Alphas."

(2) A set of nodes identifying processing conditions, called "OR"
nodes, associated with a selector variable.

(3) A set of "AND" nodes identifying ''don't care" sequences of Alphas
which could be performed in any sequence or even in parallel.

(4) A set of interface nodes where external messages are received
or transmitted.

(5) A set of initial and terminal nodes.
(6) A set of arcs joining the nodes in a legal fashion.

(7) A set of events on R-Net paths, each of which enables an R-Net to
perform processing. The arrival of a message at an interface may
also constitute an event.

(8) A set of validation points used to uniquely identify paths, and to
specify where data are to be extracted to test the process.

The R-Net is a synthesis of a set of paths. Each Alpha is associated
with two subsets of data identifiers, representing data input to and output
from the processing step. The link between the functional and performance
requirements is achieved through the validation points. Each validation
point is associated with a set of data identifiers representing data to be
collected. 1If a test for a performance requirement is written only in
terms of those data identifiers, then the requirement is testable [19).

A collection of R-Nets containing performance requirements for each path

a2

is called a Graph Model of Performance Requirements (GMPR) [19]. An example
of a GMPR is shown in Figure 1. It should be noted that an R-Net does not
necessarily describe paths through software modules. They also do not
necessarily deal with the implementation of the software. Instead, they
describe a sequence of required processes. Each of these processes may be
implemented in a number of software modules, and some software modules may
be implemented in several processes [18].

The development of the R-Nets associated with a system is a top-down
process. The designer must first specify the responses in terms of a few
processes stating the processing necessary at a high level. Later, each of
these processes is in turn expanded into R-Nets. The refinement process
continues until any further refinement would be machine or operating system
dependent. The success of this approach to specifying the requirements of
large-scale software has been demonstrated on systems as complex as the
Ballistic Missile Defense systems [17,18].

Since the current trend in stating performance requirements is at the
R-Net processing level, the potential effect of a software modification will
be analyzed by the maintenance technique outlined in this report in terms of
performance changes at this level. This level is also chosen because the
recent development of requirement statement languages for expressing R-Nets
provides a convenient interface with the maintenance technique [17,18,19].
Thus, the maintenance technique outlined in this report is designed to aid
the maintenance effort of systems built with current design techniques as
well as those systems which have been constructed utilizing previous design
techniques. The maintenance technique is capable of handling both newly
designed software and older existing software because it operates upon
performance attributes which are decomposed from the performance requirement:s.
When performance requirements are stated at the R-Net level, this decomposi -
tion is simpler than at other levels. As requirement statement languages
continue to develop, it appears feasible that this decomposition may even b'e
accomplished automatically. The performance requirements of existing soft--
ware systems, which are not stated at the R-Net level can be decomposed
into performance attributes, but this process may be more difficult to
automate. Thus, although the maintenance technique is flexible enough to
support the maintenance activity of all software systems, the ideal situation
occurs when performance requirements are stated at the R-Net level.

A key objective in the maintenance phase is the identification of modules
whose performance may change as a consequence of a software modification.

These changes can then be placed in proper perspective by interpreting their
effect on the performance requirements.

4. PERFORMANCE DEPENDENCY RELATIONS

The identification of modules whose performance may change as a conse-
quence of software modifications is a complex task. The identification is
complicated by the fact that performance dependencies often exist among
modules which are otherwise functionally and logically independent. A
relation "v" can be defined over the set of modules in the system as follows:

ke o SR . 3 % TS RIS

|
!
‘

INPUT
RADAR
CONTACT

VERIFY
CONTACT
,i\ ERRONEOUS

CONFIRMED

CONTACT A
IDENTIFY DETERMINE REPORT
AIRCRAFT LOCATION FALSE

CONTACT
NO THREAT POTENTIAL THREAT

AR

) v2

REPORT
CONTACT

V3

ORDER
INTERCEPT
MISSION

PATH P1 (V1-V4) Acknowledge false contact within 100 ms.

PATH P2 (V1-V3) Order intercept mission wiihin 500 ms.

Figure 1. A graph model of performance requirements of a simple

program expressed in terms of an R-Net.

Let S = {all modules in the system} and A, B, C €S,

Then, AVB if and only if a change in module A can have an effect on the
performance of module B. A performance dependency relationship (PDR) is
then defined between module A and module B. If the relation is symmetric,
i.e. AvB and BvA, a performance interdependency relationship (PIR) is de-
fined to exist between modules A and B. Figure 2 consists of an invocation
graph from module B. The invocation graph is defined such that each node
represents a module and a directed line from one node to another indicates

i that the parent node invokes the subordinate node. Thus, in Figure 2, we

i have module B invoking module A. Therefore, a PDR exists between modules

! A and B since a change in module A can affect the performance of module B.
Figure 3 illustrates a PIR between modules A and B. In the figure, the
graph illustrates that module A and module B can be executed in parallel.
If modules A and B must share common resources, it is quite likely that a
change in either module may affect resource utilization and, consequently,
the performance of the other module.

Although it is possible to have AVB and BVC, the transitive property is
not necessarily true for this relation and, consequently, it is false to
conclude that AVC. For example, assume in Figure 4 that module B is sending
a message to module C. Thus, BVC since a change in the time module B sends p
the message can affect the performance of module C. Now, the invocation ’
graph for module B shows that module B calls module A. Thus, AvB since a
change in module A can affect the performance of module B. We now have AVB
and BVC. However, if module B calls module A after module B transmits the
message to module C, A%C since a change in module A cannot affect the
performance of module C. '

A pure performance dependency relation (PPDR) can be defined between
module A and module B if there exists a change in performance of module A
which is not the result of a modification to module A that can have an
effect on the performance of module B. This relationship is denoted by A~ 3.
Figure 5 illustrates a PPDR between module A and module B. In the example in
Figure 5, assume module X is modified with a resulting change in its per-
formance. The change in performance in module X will ripple to module A,
thus, altering its performance, This in turn will affect module B indicating
a PPDR between A and B since module A has not been modified. A pure per-
formance interdependency relation (PPIR) can analogously be defined to exist
between module A and module B if the pure relation is symmetric, i.e., A®B
and BAA. Figure 6 illustrates a PPIR between module A and module B. 1In the
figure, the graph illustrates that modules A and B can be executed in paral-
lel. 1If modules A and B must share some common resources, it is quite likely
that a performance change in either module may affect resource utilization
and, consequently, the performance of the other module. If called module X
within module A utilizes a data abstraction, a change in the implementation
of the abstraction may affect the performance of X. This in turn may affect

; the performance of A. Thus, AB. In an identical manner it can be shown
that BaA. Therefore, a PPIR exists between module A and module B.

Two modules are defined to be performance independent (PI) if there does

Figure 2. An invocation graph from Module B for illustrating a
Performance Dependency Relationship.

T

b

e

T

INPUT

& a il

>-——1

=]

ourrur>

Figure 3. An R-net of a simple program for illustrating a Performance
Interdependency Relationship between Modules A and B.

INPUT

T o T N e A g

PRSI =Tl

®
<OUTRUT >

(a)

(®
O ®)
¥

(b)

Figure 4. (a) The R-Net of a simple program and (b) the
invocation graph from Module B for illustrating that
the Performance Dependency Relationships are not
transitive.

Figure 5.

An invocation graph from module B for illustrating a
Pure Performance Dependency Relationship between
Module A and Module B.

(a)

(b) ()

Figure 6. (a) The R-Net of a simple program, (b) the invocation
graph from Module A, and (c) the invocation graph
from Module B for illustrating a Pure Performance
Interdependency Relationship between modules A and B.

not exist a PDR or PPDR between them. A system is more maintainable from a
performance perspective if the degree of PDR and PPDR among the modules of
the system is small, i.e. most of the modules exhibit performance independ-
ency. The first task in evaluating the maintainability of a large-scale
software system is, thus, the identification of the PDR and PPDR that exist
among modules. This requires an analysis of the mechanisms in existence

in a large-scale software system by which changes in performance as a conse-
quence of a software modification are propagated throughout the system.

5. MECHANISMS FOR THE PROPAGATION OF PERFORMANCE CHANGES

It is obvious that when a logical or functional error is discovered in
the software, the scope of effect of this error can affect other modules.
Analogously, when a performance change is made, the scope of effect of the
change can be determined by examining the mechanisms by which this change
can affect other modules. In this section, we will identify eight mechanisms
which may exist in large-scale systems by which changes in performance as a
consequence of a software modification are propagated throughout the system.

5.1 Parallel Execution

The first mechanism for the propagation of performance changes involves
a modification during maintenance which results in a loss of parallel execu-
tion capability. In the maintenance phase it is possible to intrnduce
software modifications to a module which can destroy its ability to be
executed with other modules in parallel. For example, if the module must be
modified so as to store an intermediate result in a shared data structure,
then it may no longer be able to execute in parallel with modules also
utilicing the data structure. This condition must be apparent to maintenance
personnel to prevent a modification having this effect from going unnoticed.
If it is not detected, it can lead to a violation of the functional require-
ments of the system.

Although a modification to a module may be recognized as destroying its
ability to be executed in parallel with other modules, it may still be
necessary to proceed with the modification anyway. This may be necessary
when the functional requirements of the system have changed, and the modifi-
cation is required to satisfy the new functional requirements. The mainte-
nance personnel must then be aware of the change in performance which will
result from the loss of the parallelism. Major changes in performance may
result due to execution delays and contention for resources previously
alleviated through the parallel execution. Thus, modifications affecting
parallel execution of modules can lead to violations of performance require-
ments .

5.2 Shared Resources

Another mechanism for the propagation of performance changes is con-
tention for resources among modules. When modules are forced to share
resources, the time when each module requests and releases common resources
are important performance parameters. In a multiprogramming environment,
performance degradation may be experienced by modules whose execution is

14

being affected by the denial of requested resources which are currently
dedicated to other modules. The problem is intensified when the modules can
execute in parallel. For example, consider the R-Net of a simple program in
Figure 7. In the graph, assume that modules B and C must share a common
resource. Then, a modification to the performance of either could affect
the utilization of the common resource and, thus, the performance of the
other. This illustrates a PIR between modules B and C since a change in
module B can affect the performance of module C and a change in module C can
affect the performance of module B. Thus, software modifications producing
performance changes in the time resources are utilized can have detrimental
effects on the performance of modules that must also share the resources.

5.3 Interprocess Communication

Another mechanism for the propagation of performance changes involves
communication among the modules in the system.

When one module must send a message to another module, the performance
of the module receiving the message is dependent upon when the message is
actually received. Thus, modifications to the module sending the message
that alter the time when the message is sent can affect the performance
of the module designated to receive the message. This is another example of
a PDR between the communicating modules. Since the key dynamic attribute
in this environment is the time when the message is sent, it is possible
for the communicating modules to participate in a PPDR. This situation is
illustrated in the example in Figure 8. In the example, suppose module B
must wait for a message from module A. If module A utilizes a data abstrac-
tion, and the implementation of that abstraction is modified, the time module
A sends the message to module B may be affected. This in turn will affect
the performance of module B. This implies a PPDR between module A and
module B.

5.4 Called Modules

Another mechanism for the propagation of performance changes is the
utilization of called modules in the software. Modifications to modules in
the maintenance phase can be divided into two types. A bounded modification
to a module is a modification which does not alter the performance of the
module. An unbounded modification to a module is a modification which alters
the performance of the module. An unbounded modification to the called
module will affect the performance of all modules calling it. A bounded
modification will not affect the performance of the other modules calling it.

5.5 Shared Data Structures

Another mechanism for the propagation of performance changes is through
the utilization of shared data structures. In this mechanism, it is assumed
that the implementation of any data abstractions utilized is not modified.
Instead, changes in the contents of the data structures are analyzed in order
to understand how they can affect the performance of other modules. The
modules under investigation will be those utilizing the shared data structure.
The basic dynamic attributes contributing to performance in this area are a

15

.Au._(,
LSSRSVIRFIPIPR-JEF VNN S RN

_INPUT

A
.
| B c]
)
:
: :
g
| ¥
D 3
|
E

< OUTPUT >

Figure 7. The R-net of a simple program for illustrating
‘ shared resources mechanism,

Figure 8.

MODULE

MODULE

INTERPROCESS
COMMUNICATION

An example of the interprocess communication mechanism
between two modules,

17

S s cad A S

B b o i

i i o

il

————
e 4

kDt i

ATy

g

T et sy e

R

module's storage and retrieval times for entries in the data structures. |
Factors affecting storage and retrieval times vary among the different types |
of data structures as well as the algorithms utilized to manipulate these

structures. For example, in linked structures the length of the ? -ts can

affect storage and retrieval times. In general, data structures aunu the

algorithms to manipulate them are designed for a particular operational

environment. During software maintenance, however, this environment may be

altered. The modification may lead to saturation of the data structure

resulcing in long lists or heavy utilization of overflow areas. This may in

turn reflect upon module storage and retrieval times of elements to the data

structure. The effect could be even more severe if the data structure

overflowed and data was lost.

It is, thus, very important in the maintenance phase to understand how
a modification of a module could affect the contents of shared data struc-
tures. Modifications which affect the quantity of intermediate data stored
must be analyzed as well as changes to modules which process and ultimately
delete entries from data structures. For example, consider a queue shared
between module A and module B. Assume module A generates data and stores
it in the queue, and that module B processes this data and deletes it from
the queue. Then either a modification to module A affecting the rate of
intermediate data generated, or a modification of the processing of the data
in module B can lead to overflow of the queue. The problem is even more !
acute when the data is perishable, i.e. it must be processed within a
certain period of time. This problem is vividly exemplified in Air Force
command and control systems. Due to the speed with which weapons can inflict
destruction, decision times in command and control systems are very short.
Also, much of the data required for dynamic force management is highly
perishable and must be properly sequenced with other time-sensitive data to
permit an accurate and useful picture of the situation [23]. Thus, modifi-
cations to modules sharing common data structures can lead to both per-
formance and functional requirements violations.

5.6 Sensitivity to the Rate of Input

Another mechanism for the propagation of performance changes involves the
rate of input into a process. This change in input frequency is the result
of a changing environment. The resulting change of input rate to the process
can have major repercussions in terms of its functional and performance re-
quirements. For example, it can lead to saturation and possibly overflow of
data structures involved with the processing of the input. The increased
frequency of input arrivals may also lead to interruptions in processing
which can lead to both functional and performance requirement violations.

These are difficult problems for maintenance personnel to address. When
the software processing environment is modified resulting in increased rates
of input, the maintenance personnel must evaluate this change in terms of its
impact on the system processes which must handle the input. Thus, changes
in the rate of input to processes are important and their effect on software
functional and performance requirements must be evaluated.

18

5.7 Execution Priorities

Another mechanism for the propagation of performance changes involves
the execution priority of modules. During the development phase, module
execution priorities may have been established to insure correct sequencing
or preservation of critical system performance requirements. The priorities
are used to determine the execution order of modules capable of beginning
execution at the same time. The priorities may also be utilized in the
determination of whether or not a module's execution should be pre-empted
for that of a module with a higher priority. During the maintenance phase,
it is important for maintenance persounel to recognize the effect of a
proposed modification in respect to the existing priorities in the system.
For example, if module A has the ability to interrupt the execution of
module B, then any modification affecting the execution time of module B
must be carefully analyzed in order to determine if module B can still
perform its designated function before being interrupted. Maintenance
changes involving resetting of priorities or the addition of new priorities
are even more difficult to assess. Modification of existing priorities can
create conflicts in the system such as resource contention that can lead to
performance degradation. Thus, priority considerations are important in the
preservation of the performance requirements of the system.

5.8 Abstractions

Another mechanism for the propagation of performance changes is the
utilization of abstractions in the software. The use of abstractions is a
popular design tool and adds to the maintainability of the system by hiding
design decisions. From the performance perspective of maintainability,
however, abstractions are '"trojan horses.'" This is because a change in thé
implementation of the abstraction will very likely affect the performance
of the abstraction, and, thus, the performance of all modules utilizing
the abstraction. For example, a data abstraction may have an associated
retrieval time for finding a particular entry. If the data structure is
reorganized and different algorithms are implemented, the associated
retrieval time may vary. In a module that is heavily utilizing the abstrac-
tion, the change in performance may be intolerable. This is a classic
example of a case where a modification to software during maintenance does
not produce any functional or logical changes, but it does result in
performance changes.

6. IDENTIFICATION OF PERFORMANCE CHANGE PROPAGATION MECHANISMS IN SOFTWARE
SYSTEMS

The next task that must be completed is to find whether the eight
mechanisms discussed in the last section may exist in a software system
under study. This involves the development of algorithms for the deter-
mination of which mechanisms are in effect and which modules are within their
influence. With this information available, it will be possible to determine
what performance dependency relationships exist in the software system.
This is the information which is vitally needed by maintenance personnel in
the evaluation of the impact of proposed software changes on performance
requirements.

19

The identification of most of the performance propagation mechanisms in
a program can begin as early as the design stage. At this early stage, the
major input into the algorithms to identify the existence of these mechanisms
in a program consists of a set of R-Nets and invocation graphs for the
program as well as some designer supplied information such as execution
priorities. It is then possible to perform an analysis of the program to
determine which mechanisms are present and, consequently, where performance
dependencies exist. A complete static analysis of the implemented program
is necessary for a more precise prediction of performance changes resulting
from software modification.

In this section, algorithms for the determination of which mechanisms are
in effect in a large-scale program will be briefly discussed. In another
report, we plan to formally describe each of these algorithms with accompany-
ing examples and proofs of the correctness of the algorithms.

6.1 Identification of Modules Executable in Parallel

The first mechanism for the propagation of performance changes to be
examined in a software system is a change involving a loss of parallel
execution capability. During the maintenance process, programmers must
constantly be aware of which modules can be executed in parallel. They
must then be cautious about modifications to these modules that can destroy
their ability to execute in parallel. 1If the ability to execute in parallel
must be lost in order to incorporate some type of modification, then it is
fmportant to determine the performance changes that will result in other
modules in the system. The major performance change will be experienced
in the process in which the module was executed in parallel. The primary
effect will be an increase in execution time as a consequence of the lost
parallelism. The delay can be considerable if the modified module must
wait for resources that were previously available at its earlier execution
time. Thus, information regarding changes in performance as a consequence
of lost parallelism must be available to maintenance personnel in order that
they can fully ascertain the implications of proposed modifications. This
information is dependent upon the identification of which modules may be
executed in parallel. The determination of which modules can be executed in
parallel is a decision made during the design phase of the system. This
decision must be reflected in either the software implementation or its
accompanying documentation. In either case, it can be {llustrated through
the use of R-Nets. Since the identification of which modules may execute
in parallel is an important step in many of the algorithms, a common
algorithm will be briefly discussed for accomplishing this objective.

[he identification of which modules may be executed in parallel based
upon the information in an R-Net is easy in a small program. For example,
in the program illustrated in Figure 9, it is obvious that modules B and C,
C and D, and H and T are the only modules which may be executed in parallel.
A convenient notation for describing which modules may be executed in paral-
lel is to enclose those modules that may be executed in parallel within
parentheses. For example, (A,B) denotes that modules A and B may be executed
fn parallel. The same notation can be modified when only a single module
in a set may be cxecuted in parallel with a single module in another set.

20

Figure 9.

&)
B)
{ C
D

1 E |

A

>

ourpPuT>

The R-net of a simple program for illustrating the
identification of modules executable in parallel.

21

I'he individual modules are then replaced by the sets of which they belong
in the notation. For example, ({A,B},{C,D}) represents that either module
A or B may be executed in parallel with either module C or D. The notation
for the example in Figure 9 would then be: {({B,D}C), (H,I)}.

The identification of which modules may be executed in parallel based
upon the R-Net graphs becomes more difficult as the complexity and size
of the program increases. In larger and more complex programs, it is also
important to determine the sets consisting of all modules that can be
executed in parallel at the same time. These sets can be defined as
parallel execution sets. An example of a larger and more complex system is
illustrated in Figure 10. One example of a parallel execution set from
this example is {E,F,C,1,J} since it is possible for each of the modules in
the set to be executed in parallel at the same time. Parallel execution
sets play an important role in the resource contention problem, since it is
necessary to determine how many modules are competing for the fixed number
of available resources. Although the modules in parallel execution sets
may seldom actually be executed simultaneously in the system due to their
current relative execution start times, the potential for their simultaneous
execution exists. After a period of operation and maintenance, it is
possible that the modules in the parallel execution sets could be executed
simultaneously and, therefore, this consideration should remain a factor
in determining the effect of software modifications.

We would like now to briefly discuss an algorithm to identify for
each module of a program the set of modules that may be executed with it
in parallel in the program. From these results, it will then be possible
to find the parallel execution sets in the program. The major input to the
algorithm consists of an R-Net graph for the program. The graph should be
at the level of abstraction necessary to represent the program at the
module level.

The first step of the algorithm is the identification of parallel
control nodes (PCNs). A PCN is defined as an "AND" node in the R-Net with
an out-degree greater than one, i.e. the PCNs signal the beginning of
parallel execution. Associated with each PCN in the graph, there is at least
one "AND'" node for synchronizing the recombination of control flows eminating
from the PCN. The identification of the associated "AND'" nodes for each
PCN is accomplished by examining the points of intersection of the control
flows eminating from the PCN.

The next task to be performed for each module is the identification of
which control flows pass through it. All predecessor PCN nodes on these
control flows can then be identified. The associated "AND" nodes can then
be identified. Those PCNs with "AND" nodes which are predecessors of the
module under investigation are eliminated. The set of modules that can be
executed in parallel with the module under consideration is then formed by
adding to the set all modules on control flows eminating from the remaining
PCNs and ending with the corresponding "AND'" nodes on the control flow of
the module under consideration.

After each module in the system has had its set of modules that can be

22

—

-

{rf—
C?'

__i__ @

i

]

2 4

m

Figure 10. R-net of a larger and more complex program.

23

P ——

-

ey

executed in parallel with it identified, the parallel execution sets can
then be formed. These sets are easy to create. The first step is the
selection of a module and its set of modules that can be executed in
parallel with it. At this point, there are at least two modules that can
be executed simultaneously. Next, a module is selected within the set of ;
parallel executable modules. Its corresponding set of parallel executable

modules is then intersected with the remaining modules in the set to

determine if there exists three modules that can be executed simultaneously. '
The process is iterated for all modules remaining in the set and for all
modules in the system.

Y

There are several important parameters pertaining to software maintain-
ability from a performance perspective that can be gleaned from the output
of this algorithm. For example, the degree of parallel influence of a 1
module can be defined as the number of modules which can be executed in
parallel with it. The degree of parallel influence can serve as a measure
of the complexity of modification of a module since it measures the number
of potential performance changes in modules that can occur as a result of
a modification.

The above briefly discussed algorithm to determine the modules that
can be executed in parallel is also an important step in many of the al-
gorithms to determine the existence of other mechanisms for propagating
performance changes in a program. For example, it is a crucial step in
identifying the existence of the next mechanism.

6.2 JIdentification of Shared Resources

The next mechanism to be examined in a software system is that of
shared resources. The end product of this examination is the identification
of performance dependency relationships among modules as a consequence of
resource sharing. These relationships specify the consequences of a modifi-
cation to the resource utilization of a module on the performance of other
modules sharing the resource. The identification of the performance
dependencies centers upon the identification of modules sharing a resource
in a manner such that a modification of the utilization of the resource can
result in the execution of some of the modules being blocked until the
resource is available. To accomplish this objective, modules sharing a
resource that can be executed in parallel must be identified by this
algorithm. For example, if modules A and B must share a resource, a modifi-
cation of resource utilization in module A will not have an effect on module
B if module A must complete execution before module B can begin. Only if
the execution of module A and module B overlap can the modification have
an effect on performance. The modules sharing common resources and
executable in parallel are then identified as being part of a performance
interdependency relationship since a modification to one of the modules
affecting its resource utilization can affect the performance of the other
modules.

6.3 Identification of Interprocess Communication

The next mechanism for the propagation of performance changes to be

24

F——'————"'—'—-' . -

identified in the software system involves interprocess communication.

Interprocess communication is usually established in the design phase of the

software system. These decisions involving interprocess communication must
be reflected in either the software implementation or its accompanying
documentation. Petri nets are a form of documentation that may be utilized

in describing communications in the system [24]. Interprocess communication

can also be recognized in the software when synchronization primitives such
as P and V operators or WAIT and POST macros are utilized. It is then
possible to perform a static analysis of the system to identify the modules
involved in the communication. A performance dependency relationship can
then be established between the modules sending the message and the modules
receiving the message. This information can be saved for later utilization
by maintenance personnel in their determination of the performance ramifi-
cations of proposed software modifications.

6.4 Identification of Called Modules

The next mechanism in a program for the propagation of performance

changes to be studied is that of called modules. It is very easy to identi-

fy those modules in the system that are called by other modules by perform-
ing a static analysis of the system. Called modules can then be identified
and performance dependency relations established between the called modules
and the modules which call them. This information is important for mainte-
nance personnel considering modifications to called modules in a program.

6.5 Identification of Shared Data Structures

The next mechanism in a program for the propagation of performance
changes to be considered is that of shared data structures. A straight
forward method of identifying this mechanism in a program would be to find
all shared data structures and the corresponding modules manipulating them.
This estimation, however, is not very accurate since only modules manipu-
lating the data structure in a manner that may affect the performance of
other modules utilizing this data structure are being investigated. As
previously discussed, the basic attributes contributing to performance in
this area are a module's storage and retrieval times for entries in the
data structure. The factors affecting storage and retrieval times vary
among the different types of data structures as well as the algorithms
utilized to manipulate these structures. For example, a factor that is

significant in many types of data structures is the number of entries
stored in the structure.

The modules manipulating shared data structures can be classified into

four categories based upon their utilization of the data structure. The
categories are:

1. Reference entries only
2. Update entries

3. Create new entries

25

S e ad i

Sace b umiied duhs dgin

cole b Ul g g

v s S I ST I

4. Delete old entries

It is, of course, possible for a single module to exist in more than one

category. }
The algorithm for identifying performance dependencies in this area is ;&
based upon the general notion that the number of entries in the data p

structure affects storage and retrieval times. One step of the algorithm
would then be the classification of the modules sharing the data structure
according to the above four categories. Performance dependency relationships 3
could then be established between the modules creating the deleting entries

and the other modules sharing the data structure. The relationships are

valid since a modification to the modules creating or deleting entries may 4
result in an increase in the number of entries in the data structure. This
may affect storage and retrieval times, and ultimately the performance of
the other modules sharing the data structure.

6.6 Identification of Modules Sensitive to Their Rate of Input

The next mechanism in a program for the propagation of performance
changes to be studied is that of changes in the rate of input to a process.
One of the major factors that determine whether a module is sensitive to
its rate of input involves the module's storage structure for storing the
input. Modules with fixed size storage structures may experience overflow
problems. An increase in the rate of input may also result in the loss of
previous input values. Another problem may be that the module has insuf-
ficient time to process the input before being interrupted by another input.
An increase in the rate of arrival of inputs may also produce delays in
servicing these inputs. Thus, the potential for performance requirement
violations is large when the rate of input to a process is increased.

6.7 Identification of Execution-Priority Sensitive Modules

The next mechanism for the propagation of performance changes to be
identified in the software involves execution priorities. As previously
discussed, execution priorities are set during the software develc, ment
phases to insure correct sequencing or preservation of critical system
performance requirements. These priorities must be reflected in either
the software implementation, in particular the dispatching algorithms, or in
the accompanying documentation. The relative priority of modules executable
at the same time can then be compared. A performance dependency relation-
ship can then be considered in existence between a higher priority module
and another which can execute at the same time. This relationship is im-
portant to maintenance personnel in determining the effect of a proposed
modification on the performance of other modules in light of the existing
execution priorities.

6.8 Identification of Abstractions
The next mechanism for the propagation of performance changes to be

identified in a program is that of the 'trojan horses,'" i.e. the abstrac-
tions. The utilization of abstractions in a module can be easily identified

26

SET——-

.mwm -

by static analysis. Abstractions can be recognized in the module as sub-
routine calls, function calls, and macros. Performance dependency relation-
ships can then be established between the implementations of the abstractions
and the modules utilizing them. This information will be valuable in aiding
maintenance personnel evaluate possible changes of performance as a conse-
quence of a modification of an abstraction implementation.

7. PERFORMANCE ATTRIBUTES

Performance attributes of a program are defined as attributes correspond-
ing to measurements of key portions of the execution of the program. For
example, one performance attribute of a module is its execution time.
Another is the utilization for a particular resource during the execution
of the program. There is a distinct relationship between performance
attribuytes and the eight mechanisms for the propagation of performance
changes. The eight mechanisms operate as links between performance
attributes of modules. In other words, a change in a performance attribute
of one module can affect a performance attribute in another module via one
of the eight mechanisms. For example, let X represent the performance
attribute corresponding to the time a resource is seized by module A.

Assume module B is in contention for the same resource with module A and let
Y represent the performance attribute corresponding to the time module B
seizes the same resource. Then a change in performance attribute X can
affect performance attribute Y via the shared resources mechanism.

The relationship between performance attributes and the eight mechanisms
for the propagation of performance changes is illustrated in Figure 11,
where the directed line labeled with a mechanism connecting two performance
attributes indicates a performance dependency relationship exists between
the performance attributes. For example, if performance attribute two of
module A is modified, it can affect performance attribute two of module B
via mechanism one.

We will now present twelve software performance attributes. These
performance attributes are not a complete set of attributes corresponding
to measurements of the execution of the program. Instead, these performance
attributes are the attributes linked with the eight mechanisms as previously
discussed. For a given module, not all of these performance attributes may
be applicable.

Performance Attribute 1: The ability of the module to execute in parallel
with another module.

Performance Attribute 2: For each resource in contention, the relative time

that the module seizes the resource.

Performance Attribute 3: For each resource in contention, the relative time

that the module releases the resource.

Performance Attribute 4: The relative time that the module begins execution.

27

MODULE A MODULE B

<) MECHANISM 1 ()
P.A. 4 P.A. 2
F.A. 3 - P.A, 3 ’

Figure 11. Relationship of Performance Attributes and the
Mechanisms for the Propagation of Performance
Changes.

28

e, RS-

Performance Attribute 5: The relative time that the module transmits a
message to another module.

Performance Attribute 6: The execution time of the module.

Performance Attribute 7: For each resource utilized in the module, the
resource utilization by the module.

Performance Attribute 8: For each dependent iterative structure in the
module, the number of iterations.

ade e o

Performance Attribute 9: For each data structure, the storage and retrieval (4
times for entries in the data structures. 4

Performance Attribute 10: For each data structure, the number cof entries
in the data structure.

-

Performance Attribute 1l: For each data structure, the service time of an
entry in the data structure, i.e. the relative time that an entry 1
remains in the data structure before being serviced. ‘

Performance Attribute 12: The rate of input to the module.

8. CRITICAL SECTIONS OF A PROGRAM

o~ TR

Since the performance attributes of a program correspond to measurements
of key portions of the execution of the program, they can be affected during
the maintenance process by modifications to the program. A critical sectioén
of a program can be associated with each performance attribute such that if E
this critical section is modified, the corresponding performance attribute !
may be affected. For example, if the performance attribute under considera- .
tion is the execution time between when a module begins execution and when E
it transmits a message, the corresponding critical section is that section
of code between module invocation and transmission of the message. Tt i
should be noted that a critical section for a particular performance t
attribute may be part of another critical section for a different perform-
ance attribute. In this case, a modification to a critical section within
another critical section can affect the corresponding performance attributes
of both critical sections. The relationship of performance attributes,
critical software sections, and the mechanisms for the propagation of
performance changes is illustrated in Figure 12, where the directed line |
labeled with a mechanism connecting two performance attributes indicates
a performance dependency relationship exists between the performance f
attributes. A directed line also connects each critical section (C.S.)
with its corresponding performance attribute. It is apparent from Figure 12
that a modification to C.S.l1 being also a modification to C.S.2 implies
both P.A.2 and P.A.3 of Module A may be affected. Also, a change in P.A.2
of Module A may affect P.A.2 of Module B via mechanism one. Thus, the
modification in Module A can affect the performance of Module B.

~

SRR AN LR DR ——

The identification of the critical sections corresponding to the per-
formance attributes requires algorithms whose input includes an identifica-

29

- . , W——

MECHANISM 1

MECHANISM 2

PIA. 2 P.Al 3 P.A. gl PcAc 2

Figure 12. Relationship of performance attributes (P.A.),
critical sections (C.S.) and the mechanisms for
the propagation of performance changes in a program.

30

e B 9 TR I T 0 NPT WY

e ————

D ———————.
T p

tion of the mechanisms in existence in the program. These algorithms ror
identifying the critical sections are formally described in our second
report.

9. RIPPLE EFFECT OF PERFORMANCE CHANGE

The relationship of performance attributes, critical sections, and the
mechanisms for the propagation of performance changes in a program forms
the basis for the concept of a performance change ripple-effect as a conse-
quence of software modification. When a critical section is modified, it
may affect the corresponding performance attributes. A change in these
performance attributes may then ripple, i.e. affect other performance
attributes via any applicable mechanisms.

A performance dependency relationship is defined to exist between two
performance attributes if a change in one of the performance attributes
may affect the other performance attribute via one of the mechanisms for
the propagation of performance changes. Thus, the determination of the
performance dependency relationships requires an identification of the
mechanisms in existence in the program. In our second report, rules for
formulating these performance dependency relationships are presented in
detail. The format of these rules consists of the identification of a
performance dependency relationship between a performance attribute of one
type of a module and a particular performance attribute of another module
with the restriction that the modules are involved in a performance
dependency relationship via one of the mechanisms. For example, one rule
states that a performance dependency relationship exists between performance
attribute 2 of module X and performance attribute 2 of module Y if modules
X and Y are in a performance dependency relationship via the shared re-
sources mechanism. The performance dependency relationships between
performance attributes are then identified by applying these rules to the
actual program being analyzed. The performance dependency relationships
are then saved for utilization during the maintenance phase of the program.

10. MAINTENANCE TECHNIQUE FOR PREDICTING WHICH PERFORMANCE REQUIREMENTS
ARE AFFECTED BY THE MAINTENANCE ACTIVITY

The maintenance process can be improved if maintenance personnel are
supplied with information enabling them to incorporate performance consider-
ations in their criteria for selecting the type and location of program
modifications to be made. This information is provided by the development
of a maintenance technique for predicting which performance requirements
in the program may be affected by a proposed modification. The prediction
of which performance requirements may be affected by a program modification
is a difficult task due to the size and complexity of design of many large-
scale software systems. Thus, the significance of this maintenance
technique lies in its ability to trace repercussions introduced by mainte-
nance changes and predict which performance requirements may be affected
by the change. The technique developed here is applicable to all types of
large-scale software systems possessing performance requirements including
multiprocessing systems. In the next section, we are going to present a

i

general framework for such a technique. The formal description of the
algorithms composing this technique as well as the proofs of the correctness
of these algorithms is included in our second report. Also included in

that report is a demonstration of the maintenance technique during the {
maintenance phase of a typical program.

10.1 The General Framework of the Maintenance Technique

[he maintenance technique consists of two phases. The first phase
analyzes the program and produces a data base which is saved for utiliza-
tion in the second phase of the technique when maintenance activity is in i
progress. Thus, the first phase can be performed as soon as the program
has successfully passed its acceptance tests and is entering the operational
stage of its life cycle. This first phase of the maintenance technique
consists of the following steps:

PHASE ONE

Step 1: The performance requirements for the program must be decomposed
into the key performance attributes which contribute to the preservation

or violation of the performance requirements. The decomposition of a
performance requirement quantitatively into the effect of its corresponding
performance attributes is a very complex task which is not attempted in

this technique. Instead, the decomposition is qualitative in nature, i.e. :
performance attributes are identified which contribute to the preservation
or violation of performance requirements without consideration of their
relative magnitude towards the performance requirements. This simplifica-
tion is justified because this maintenance technique attempts to identify
performance requirements which may be violated due to the maintenance
effort, and does not attempt to analytically confirm whether or not a
performance requirement 1is actually violated. The process of identifying
key performance attributes contributing to a performance requirement is not
a difficult process and can be accomplished manually. As requirement
statement languages continue to develop, it is likely that this process can
be automated. Figure 13 is an expansion of Figure 12 which includes a
description of the relationship of performance requirements, performance
ittributes, critical sections, and the mechanisms for the propagation of

per formance changes in a program. In this figure, the directed line labeled
with a mechanism connecting two performance attributes indicates a perform-
ance dependency relationship exists between the performance attributes. A
directed line also connects each critical section with its corresponding
performance attributes. A dotted line is used to connect each performance
attribute with a performance requirement which may be affected if the
performance attribute is changed.

Step 2: Determine which mechanisms for the propagation of performance
changes are present in the program.

Step 3: Identify critical sections corresponding to the performance
attributes identified in Step 1.

Step 4: Tdentify performance dependency relationships between performance

32

MODULE A MODULE B
P.R. 1 P.R. 2 P.R. 3 P.R. 4
= E

| 4 5 ' i
| /I i |
i S AT MECHANISM 1 ; I
[\ I

', o ; MECHANISM 2 ' :
| AL ; ' '
Lt £ : -
P.A. 2 P.A. 3 P.A. 3

Figure 13. Relationship of performance requirements (P.R.),
performance attributes (P.A.), critical sections
(C.S.), and the mechanisms for the propagation of
performance changes in a program.

33

PRSI

Loal _uma,

r.

s i

A siadin o et

e e i

attributes present in the program.
PHASE TWO

The second phase of this maintenance technique is applied during the
maintenance process. The input to the technique in this phase requires
all of the information about the program collected and stored in a data
base during the first phase of the maintenance technique. The second phase
of the maintenance technique consists of the following steps:

Step 1: Identify the critical sections which may be affected by the mainte-
nance activity. This can be a very difficult task for maintenance personnel
to perform due to the fact that program modifications often produce a ripple-
effect requiring further modifications which must be performed on the program.
In another task of this project, maintenance tools are being developed to
predict this ripple effect of logical changes as a consequence of a program
modification. Thus, when a program modification is considered, it will be
possible to identify the potential ripple-effect, i.e. other sections of the
program which may be affected by the change and, consequently, require
further modification. It is then possible to map these sections identified
as being affected by the maintenance activity into the critical sections
identified in Step 3 in Phase 1 of the maintenance technique.

Step 2: After the critical sections affected by the maintenance activity
have been identified, it is then possible to determine the corresponding
performance attributes which may be affected by the maintenance activity.

As discussed in Section 8, a correspondence between performance attributes
and critical sections can be established. Thus, during the maintenance
process, one approach to identifying performance attributes affected by

the maintenance activity is to assume that a modification to a critical
section will affect the corresponding performance attributes for the critical
section. This approach leads to a worst-case identification of performance
attributes affected by the software modification. A second approach to
identifying performance attributes affected by the software modification is
to solicit the help of the maintenance personnel implementing the modifica-
tion. After the critical sections affected by the proposed modification have
been identified, the corresponding performance attributes for these critical
sections can then be displayed to the maintenance personnel. The maintenance
personnel can then decide whether or not the displayed performance attribute

will be affected based upon his knowledge of the proposed maintenance
modification.

Step 3: Utilizing the performance dependency relationships established in
Step 4 in Phase 1, identify all the performance attributes affected by
changes to the performance attributes identified in Step 2 of this phase.
The objective of this step is to predict all the performance attributes
throughout the system which are affected by the program modification. This

prediction is basically a worst-case prediction except for the refinements
introduced in the last step.

Step 4: Utilizing the list of performance attributes identified in the last
step, identify those performance requirements which may be affected by the

34

maintenance activity and, thus, should be retested to insure that they have
not been violated. The performance requirements can be easily identified
by the traceability of the decomposition of the performance requirements
into the performance attributes in Step 1 of Fhase 1.

The important steps of this maintenance tecknique are summarized and
put into perspective within the maintenance process in Figure 14. From
the example shown in Figure 13, the maintenance technique could be used to
predict the performance implications of modifying C.S.1 of Module A.
In this example, P.A.2 and P.A.3 of Module A would be affected. Thus,
performance requirements P.R.1 and P.R.2 would have to be retested to insure
that they have not been violated. In addition. P.A.2 of Module B would
be affected via mechanism one. Thus, P.R.4 would also have to be retested
to insure that it too has not been violated.

10.2 Application of the Maintenance Technique to the Retesting Phase of the
Maintenance Process

After the maintenance changes have been implemented, this technique can
provide a significant contribution to the application of retesting the
program to verify that the performance requirements for the program have not
been violated by the maintenance effort. The retesting of large-scale
complex programs requires a great deal of time, effort, and expense. Thus,
any savings resulting from this maintenance technique will clearly justify
its use.

During the early stages of the maintenance process, this technique was
utilized as an aid in developing criteria for maintenance personnel to
evaluate alternate program modifications from a performance perspective.
Basically, this involved the worst-case identifications of performance
requirements which might be affected by the program modifications. After a
program modification has been selected and implemented, the maintenance
technique can substantially refine its analysis and determine more accurately
which performance requirements may have been affected by the program
modifications. This is accomplished by determining whether or not a
performance attribute is actually affected before implicating other per-
formance attributes involved in a performance dependency relationship with
the given attribute. In other words, if a dependency relationship exists
between performance attributes one and two, performance attribute two need
not be examined for changes if it has been determined that performance
attribute one 1is not affected by the maintenance activity. Thus, the
preliminary results of some of the early retesting efforts may be decisive
in the determination of the scale of retesting which remains to be done.
This technique is summarized and put into perspective within the maintenaunce
process in Figure 15. It should be noted that if a violation of a perform-
ance requirement occurs, it requires further software maintenance in order
to satisfy the performance requirement, and the entire process must be
repeated.

r—

e e ———

MAINTENANCE PERSONNEL PROPOSE ALTERNATE MODIFICATIONS

\

FOR EACH PROPOSAL, THE LOGICAL RIPPLE-EFFECT IS ANALYZED TO
IDENTIFY SOFTWARE BLOCKS AFFECTED BY THE PROPOSED MODIFICATION

Y

THESE PROGRAM BLOCKS ARE MAPPED INTO CRITICAL SOFTWARE SECTIONS

PERFORMANCE ATTRIBUTES AFFECTED BY CHANGES
TO THESE CRITICAL SOFTWARE SECTIONS ARE IDENTIFIED

|

THE EFFECT OF CHANGING THESE PERFORMANCE ATTRIBUTES IS TRACED
THROUGHOUT THE PROGRAM TO IDENTIFY ALL PERFORMANCE ATTRIBUTES
WHICH MAY BE AFFECTED

PERFORMANCE REQUIREMENTS WHICH MAY BE VIOLATED BY EACH PROPOSED
MODIFICATION ARE IDENTIFIED

MAINTENANCE PERSONNEL SELECT THE MAINTENANCE PROPOSAL MOST SUITABLE
FOR THE PROGRAM CONSIDERING THE FUNCTIONAL AND PERFORMANCE
IMPLICATIONS OF EACH PROPOSED MODIFICATION

Figure 14. The framework of a maintenance technique
in predicting which performance requirements
are affected by the maintenance activity

MAINTENANCE PERSONNEL PROPOSE ALTERNATE MODIFICATIONS

FOR EACH PROPOSAL, THE LOGICAL RIPPLE-EFFECT IS ANALYZED TO
IDENTIFY PROGRAM BLOCKS AFFECTED BY THE PROPOSED MODIFICATION

J

THESE PROGRAM BLOCKS ARE MAPPED INTO CRITICAL SOFTWARE SECTIONS

|

PERFORMANCE ATTRIBUTES AFFECTED BY CHANGES
TO THESE CRITICAL SOFTWARE SECTIONS ARE IDENTIFIED

THE EFFECT OF CHANGING THESE PERFORMANCE ATTRIBUTES IS TRACED
THROUGHOUT THE PROGRAM TO IDENTIFY ALL PERFORMANCE ATTRIBUTES
WHICH MAY BE AFFECTED

'

PERFORMANCE REQUIREMENTS WHICH MAY BE VIOLATED BY EACH PROPOSED
SOFIWARE MODIFICATION ARE IDENTIFIED

MAINTENANCE PERSONNEL SELECT THE MAINTENANCE PROPOSAL MOST SUITABLE
FOR THE PROGRAM CONSIDERING THE FUNCTIONAL AND PERFORMANCE
IMPLICATIONS OF EACH PROPOSED MODIFICATION

MAINTENANCE PERSONNEL IMPLEMENT THE PROPOSED MODIFICATION

{

MAINTENANCE TOOL IS UTILIZED TO DETERMINE SCALE OF RETESTING NEEDED

J

PROGRAM RETESTING BEGINS TO VERIFY PERFORMANCE REQUIREMENTS
ARE NOT VIOLATED

IF A PERFORMANCE REQUIREMENT IS tIOLATED, FURTHER MAINTENANCE
ON THE PROGRAM IS NEEDED AND THE PROCESS IS REPEATED

Figure 15. Application of the maintenance technique in
the prediction of performance requirements
affected by the maintenance activity and in
the retesting phase.

37

11.0 FUTURE RESEARCH AND CONCLUSION

11.1 Dynamic Analysis

The significance of this maintenance technique has been shown to be its
ability to trace repercussions introduced by maintenance changes and predict
which performance requirements may be affected by the program modifications.
This information is very valuable to maintenance personnel but its signifi-
cance can be even greater if it is supplemented by a profile of the dynamic
behavior of the program. This profile can provide maintenance personnel with
performance information about the program enabling them to identify per-
formance requirements which are close to being violated. This information
coupled with that predicting which performance requirements may be affected
by a program modification provide maintenance personnel with strong criteria
for selecting among alternative program modifications.

The profile of the dynamic behavior of a program also plays a signifi-
cant role in the retesting portion of the maintenance phase to insure that
the program modifications have not resulted in violation of any performance
requirements. After the maintenance modifications have been implemented and
the resultant changes in performance analyzed, this information can be used
along with the profile of the dynamic behavior of the program to determine
the scale of retesting which remains to be done. For example, if a process
has a performance requirement stating that it completes execution in 100
units, it will not be affected by a performance change of about 5 units if

the program's profile indicates it is currently completing execution in
75 units.

The profile of the dynamic behavior of the program is, thus, important
in the maintenance phase. It should be noted that the profile itself is
dynamic since it only reflects the dynamic behavior in the current
environment. Nevertheless, it is important in performance investigations
since the performance of the program is also dependent on the current
environment. It is, thus, meaningless to analyze performance considerations
utilizing a profile based upon a different operating environment.

More research is needed in the identification of appropriate dynamic
measurements to be included in this profile. It is seen from previous
sections that measurements pertaining to resource utilization, execution
times of critical software sections, system overhead, and degree of
saturation of data structures provide the most meaningful information for
the maintenance process. The feasibility of collecting many of these
measurements in large-scale software systems has already been demonstrated.
For example, JAVS provides a facility for capturing the execution time
spent in individual modules (25]. The Program Evaluator and Test System
developed by Stucki [26] also provides relative timing on the subroutine
level. System overhead has also been studied for some time and both
hardware and software measuring techniques exist to identify many of its
sources. Measurements pertaining to resource utilization by software
processes have also been recorded using software probes. Data pertaining
to the time when a resource is requested and when that request is actually
satisfied have been collected on large-scale software systems with a

38

3 FOE T N

I WVR A s T 327 i S I RO

ey g T

degradation of system performance due to resources committed to probe
operation not exceeding 5%. For example Figure 16 illustrates the types of
measurements that can be gathered for an executing process. In the figure,
execution times between requests as well as probabilities that particular
branches from decision nodes are executed appear in the graph [27] . These
types of measurements would be important in formulating the profile of the
dynamic behavior of the program most applicable to the maintenance process.

11.2 Figure-of-Merit for Program Maintainability from a Performance
Perspective

The theoretical foundation for this maintenance technique also forms
the basis for the development of a figure-of-merit for the program
maintainability of a system from a performance perspective. This figure-of-
merit is a measure of the impact of maintenance activity on the performance
requirements of the program. This figure-of-merit could be computed for
the program as early as the design stage. It could then be refined with
information available after implementation to provide a more precise measure
of the maintainability from a performance perspective. It is seen from
the previous sections that several factors might contribute to this figure-
of-merit. The first involves the degree of performance dependency relation-
ships in existence as indicated by the mechanisms for the propagation of
performance changes. The second involves the extent and stringency of the
performance requirements imposed upon the program. The performance of a
program is a subject which ranges from quantitative analyses to qualitative
judgments (28] . Thus, the figure-of-merit must be based from a user
perspective. The thitd involves the profile of the dynamic behavior of the
program. The current behavior of the program in perspective to its
performance requirements can provide insight into the degree of performance
changes that can be tolerated without a performance requirement violation.
For example, if the program is operating near a point of saturation, any
performance changes could lead to performance requirement violations. More
research is needed in this area to identify additional factors contributing
to the figure-of-merit and to integrate these factors into a meaningful
figure.

Most of the factors utilized in the computation of the figure-of-merit
would be applicable to the computation of a figure for the complexity of
modification to the program. More research is needed in the identification
of additional factors contributing to this figure. The complexity measure
would be valuable to maintenance personnel by providing a quantitative
comparison of potential program modifications in terms of their maintenance
characteristics from a performance point of view.

11.3 Application to Design Phase

Throughout this report, the major emphasis has been upon the propagation
of performance changes as a consequence of program modifications. The
results of this investigation will be valuable in evaluating current
software design techniques in terms of their ability to produce good
maintenance characteristics from a performance point of view.

39

Figure 16.

REQUEST
DEVICE

The directed graph of resource utilization of a process.

T AL, . comsowss o, o R

11.4 Conclusions

The process of developing complex large scale software systems
possessing performance requirements is costly, excessively time-consuming,
and difficult to manage. This process frequently leads to systems which are
unreliable, non-responsive to user-requirements, and logically too obscure
to be readily analyzed or maintained [29]. Yet these software systems
must be maintained, and the magnitude of this maintenance in terms of the
total software effort is very large. Thus, maintenance techniques are needed
that are specifically designed to predict the effect of software modifica-
tions and indicate test cases required for program retesting (30). The
maintenance technique outlined in this report is designed with these

objectives in mind and should significantly aid maintenance personnel in
maintaining software systems.

ey
La

REFERENCES

1]

(31

{4]

(5]

(6]

(7]

(8]

{10}

f11]

(12]

[13]

(14]

Mills, H. D., "Software Development,'" IEEE Trans. on Software
Engineering, Vol. SE-2, No. 4, December 1976, pp. 265-273.

Rye, P., Bamberger, F., Ostanek, W., Brodeur, N., and Goode, J.,

Software Systems Development: A CSDL Project History, RADC-TR-77-213,
Pp. 33-41. (ADAZTBE)

Goodenough, J. B., et al., "The Effect of Software Structure on
Software Reliability, Modifiability, and Reusability: A Case Study and
Analysis,'" NTIS AD 787 307, July 1974, p. 82.

McCall, J. A., Richards, P. K., and Walters, G. F., Factors in Software
Quality, Volumes I, IIf, and III, General Electric Company, pp. 2-3,
3-5, 7-9.

Yourdon, E. and Constantine, L., Structured Design, Yourdon, Inc.,
1976, p. 392.

Belford, P. C., Donahoe, J. D., and Heard, W. J., "An Evaluation of
the Effectiveness of Software Engineering Techniques," Digest of Papers,
COMPCON '77 (Fall), pp. 259-269.

Herd, J. H., Postak, J. N., Russell, W. E,, and Stewart, K. R.,
Software Cost Estimation Study, Volume I, RADC-TR-77-220, June 1977,
pp. 88-89. (A042264)

Doty, D. L., Nelson, P, J., and Steward, K. R., Software Cost Estima-
tion Study, Volume II, RADC-TR-77-220, August 1977, p. A-5, (AD44609)

Parnas, D. L., "A Technique for the Specification of Software Modules
with Examples,'" Comm. of ACM, Vol. 15, May 1972, pp. 330-336.

Liskov, B. H. and Zilles, S. N., "Specification Techniques for Data
Abstractions," IEEE Trans. on Software Engineering, Vol. 1, No. 1,
March 1975, pp. 7-19.

White, J. R. and Booth, T. L., "Towards an Engineering Approach to
Software Design," Proceedings of the Second International Conference
on Software Engineering, 1976, pp. 214-222.

Gilkey, T. J., White, J. R., and Booth, T. L., "Performance Analysis
as a Practical Software Design Tool," Proceedings of COMPSAC '77,
pp. 428-435,

Schneidewind, N. F., "Modularity Considerations in Real-~Time Operating
System Structures,'" Naval Postgraduate School, pp. 7-11.

Branscomb, L. M., “The Everest of Software,'" Proceedings of the
Symposium on Computer Software Engineering, 1976, pp. xvii-xx.

42

(15]

[16]

(17]
(18]
(19]
[20]
[21)
[22]

[23]
[24]
[25]

[26]

[27)

Sholl, H. A. and Booth, T. L., "Software Performance Modeling Using
Computation Structures," IEEE Trans. on Software Engineering, Vol. SE-1,
No. 4, December 1975, pp. 414-420.

Storey, T. and Todd, S., "Performance Analysis of Large Systems,"
Software Practice and Experience, Vol. 7, 1977, pp. 363-369.

Davis, C. G. and Vick, C. R., "The Software Development System,'" IEEE
Trans. on Software Engineering, Vol. SE-3, No. 1, January 1977,
pp. 69-84.

Bell, T. E. and Bixler, D. C., "A Flow-Oriented Requirements Statement
Language,' Symposium on Computer Software Engineering, 1976, pp. 109-
123.

Alford, M. W. and Burns, I. F., "R-Nets: A Graph Model for Real-Time
Software Requirements,' Symposium on Computer Software Engineering,
1976, pp. 97-107.

Belford, P. C., "Specifications: A Key to Effective Software Develop-
ment," Proceedings of the Second International Conference on Software
Engineering, 1976, pp. 71-79.

Balkovich, E., "Research Towards a Technology to Support the Specifi-
cations of DPSPR," Proceedings of the Second International Conference
on Software Engineering, 1976, pp. 110-115.

Salter, K. G., "A Methodology for Decomposing System Requirements into.
Data Processing Requirements,'" Proceedings of the Second International
Conference on Software Engineering, 1976, pp. 91-102.

Kosy, D. W., "Air Force Command and Control Information Processing in
the 1980's: Trends in Software Technology,'" June 1974, p. 18.

Valette, R. and Diaz, M., "Top-Down Formal Specification and Verifica-
tion of Parallel Control Systems."

JAVS Technical Report Reference Manual, RADC-TR-77-126, Vol. 2, April
1977. (A040104)

Stucki, L. G., "Automatic Generation of Self-Metric Software,"
Proceedings of 1973 IEEE Symposium on Computer Software Reliability,
pp. 94-101.

Anderson, J. W. and Browne, J. C., '"Graph Models of Computer Systems:
Application to Performance Evaluation of an Operating System,"
Proceedings of the International Symposium on Computer Performance
Modeling, Measurement, and Evaluation, 1976, pp. 187-199.

43

[28]

[29]

(30]

Kuck, D. J. and Kumar, B., "A System Model 1or Computer Performance
Evaluation,'" Pr

Performance Modeling, Measurement, and Evaluation, 1976, pp. 187-199,

DeWalf, B. J., A Methodology for Requirements Specification and
Preliminary Design of Real-Time Systems, The Charles Stark Draper
Laboratory, Inc., July 1977, pp. 1-1 to 2-20.

Ramamoorthy, C. V., and Ho, S. F., "Testing Large Software with
Automated Software Evaluation Systems," Current Trends in Programming
Methodology Volume II, Prentice-Hall, Inc., edited by Raymond Yeh,
1977, pp. 112-150,

44

MISSION
of
Rome Air Development Center

RADC plans and executes researnch, development, test and
delected acquisition proghams in suppornt of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
448 provided to ESD Program Offices (P0s) and other ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guidance and controf, sur-
vecllance of ground and aerospace objects, intelligence data
collection and handling, information system technology,
Lonospheric propagation, soid state sciences, microwave
physics and electronic neliability, maintainability and
compatibility. :

;
2
3

€A WA A LA IS IS IR AR A A A A 9

